

COURSE SPECIFICATION

Course Title	ion : Electronic circuits and its design			
Code		: EEC 312		
Department(s) offering the	e course	: Electrical Engineering		
Program (s) on which the	course is given	: Undergraduate level		
Department offering the p	orogram (s)	: Electrical Engineering		
Academic year/level	_	: 3 rd Year		
Semester		: First semester		
Date of specification/revisi	ion	: 2004		
Date of approval by Depar	rtmental/Faculty	: 2013-2014		

Taught hours:

Lecture: 3 hrs/week Tutorial: 1 hr/week Practical: 0 hr/week others: Total: 4 hrs/week

B-Professional Information

1-1 Overall Aims of the Course

The course is designed to:

understand characteristics, operation, and limitations of semiconductor devices. Provide understanding of small signal BJT and MOSFET amplifiers. To develop computer added design programs using SPICE software to model and simulate electronic devices.

1.2-Intended Learning Outcomes of the course (ILOs):

a- Knowledge and understanding:

Upon completing this course, the student should be able to:

- al-Understand the structure and characterization of the bipolar junction transistor and MOSFET.
- a2-Understand the performance of small signal amplifiers.
- a3- Understand the computer added design of the electronic devices.

b- Intellectual skills

Upon completing this course, the student should be able to:

- b1- Design and analyze the semiconductor devices.
- b2- Specify of design of small signal amplifiers.
- b3- Demonstrate of producing computer codes to model the electronics devices.

c- Professional and practical skills

Upon completing this course, the student should be able to:

- c1- understand and analyze the electronic equipment.
- c2- improve and update the electronic circuits.
- c3- adopt new circuits that help solving of the traditional problems.

d- General and transferable skills

Upon completing this course, the student should be able to:

- d1-Give technical presentations.
- d2-Work in stressful environment and within constraints .

d3-Use current technology in laboratories.

- d4- To present students with applications of digital circuits to computer systems.
- d5- Be capable of applying both traditional and new concepts and skills.

2 Syllabus

CHAPTERS	CONTENTS
Topic (1)	Diode circuits, Diode models, Diode limiter
Topic (2)	Comparator
Topic (3)	Amplifiers, classifications of amplifiers, Distortion in amplifiers
Topic (4)	amplifiers with feedback
Topic (5)	Noise, Reverse bias
Topic (6)	Oscillators
Topic (7)	Operational transconductance amplifiers
Topic (8)	power supply circuits and regulators
Topic (9)	Tuned amplifiers, stability and offset of amplifiers
Topic (10)	sinusoidal oscillators
Topic (11)	Amplitude modulation and demodulation circuits
Topic (12)	Phase and frequency modulation and demodulation circuits
Topic (13)	Analog multipliers
Topic (14)	Design of radio and television transmissions circuits

3-Teaching and Learning Methods

- 3.1-Lectures
- 3.2- Tutorial activities
- 3.3- Discussions
- 3.4- Reports
- 3.5 Office meetings

4-Students Assessment Methods

Tutorial assignments Written mid-term exam Oral examination Written final exam

4.1- Assessment schedule:

Assignment 1 Assignment 2 Assignment 3 Assignment 4

Week # 3 (1st semester) Week # 6 (1st semester) Week # 11(1st semester) Week # end of Term (1st semester)

4.2- Weighing of assessments:

 Total	100 %
Tutorial assignments	10 %
Final Exam	60 %
Oral Exam	10 %
Mid-Term Exam	20 %

6-List of References

6.1-Course notes:- notes prepared by the lecturer and his private power point templates.

6.2-Essential books (textbooks):

Donald A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, New York, 2003.

Sedra and Smith, Microelectronic Circuits, Oxford University Press, Inc., New York, 2004.

6.3-Recommended books:

6-3-1 S.M. Sze, Physics of Semiconductor Devices, John Willey & Sons, New York, 1981.

6.3.2 Sorab K. Ghandhi, VLSI Fabrication Principles, John Willey & Sons, New York, 1994

6.4-Periodicals, websites, etc.:

- IEEE, IEE journal
- Periodicals, Web sites, etc ...

7-Other Resources/ Facilities required for teaching and learning to achieve the above ILOs .

7.1- Computer and data show in the lecture room.

- 7.2- Computer and Internet access for the students.
- 7.3- Many text books available in the departmental library.

7.4- Previous student projects.

8- We certify that all of the information required to deliver this course is contained in the above specification and will be implemented.

Course Coordinator:	
Name: Dr	
Signature: Date	e: Dec. 2013
Head of Department of:	
Name: Prof. Dr	
Signature: Date: Dec.	. 2013

5- Course Curriculum Map

Course title: Electronic circuits and its design

Code: EEC 312

Course aim: understand characteristics, operation, and limitations of semiconductor devices. Provide understanding of small signal BJT and MOSFET amplifiers. To develop computer added design programs using SPICE software to model and simulate electronic devices.

		Intended Learning Outcomes (ILOs)			Topics				
S	Week #	Knowledge and understandin g	Intellectual skills	Professional and practical skills	General and transferable skills		Teaching Methods	Assessment Methods	Evidences
1	1	a1 + a3				Diode circuits, Diode models, Diode limiter			
2	2	a1 + a3	b1 + b2	c1	d1 + d2 + d3	Comparator			
3	3	a1 + a3		C2		Amplifiers, classifications of amplifiers, Distortion in amplifiers			
4	4	a2 + a3			d1 + d2 + d3	amplifiers with feedback			
5	5	a2 + a3			d1 + d2 + d3	Noise, Reverse bias	3.1 -		Course file, Exam
6	6	a2 + a3	b1 + b2		d1 + d3 + d4	Oscillators	Lectures		
7	7	a1 + a3	b1 + b3		d1 + d3 + d5	Operational transconductance amplifiers	3.2- Tutorial		
8	8	a1 + a3	b1 + b2	C3		power supply circuits and regulators	activities 3.3-	mid-term	samples,
9	9	a1 + a2			d1 + d4 + d5	Tuned amplifiers, stability and offset of amplifiers	Discussions	exam 4.3 Oral	Regular reports,
10	10	a1 + a2		C1	d1 + d2 + d3	sinusoidal oscillators	3.4- Reports 3.5 Office	examination 4.4 Written	· /
11	11	a1 + a3			d1 + d4 + d5	Amplitude modulation and demodulation circuits	meetings	final exam	
12	12	a1 + a3	b1 + b3	C2		Phase and frequency modulation and demodulation circuits			
13	13	a1 + a2	b1 + b2			Analog multipliers	1		
14	14	a1 + a3	b1 + b3			Design of radio and television transmissions circuits			

Course coordinator: Dr.

Department Head: Dr.